Fragment Libraries

available from Reaxense

Chelator Fragment Library

The principles of metal chelation provide significant opportunities for drug design that go beyond traditional notions of chelation as metal sequestration and elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. A good example is fragment-based lead design (FBLD) that has been used to identify new metal-binding groups for metalloenzyme inhibitors. This and other approaches exploit the presence of the metal ion in these enzymes for the development of synthetic small molecules with therapeutic potential.

Ro3 Fragment Library

In the past decade, fragment based drug design (FBDD) has risen as a new and effective approach to identify lead compounds and continues to show great promise in drug discovery. It requires the use of sensitive techniques such as X-ray crystallography to identify hits among low molecular weight fragment compounds that have a weak binding affinity to a drug target. The hit fragments could be then structurally optimized to lead compounds with high affinity and specificity.